
SDPs, Max Cut, and Goemans Williamson1

• In this lecture, we look at “SDP rounding” for the Max Cut problem. Let’s recall a few things from the
last lecture. In the max cut problem, one is given an undirected graphG = (V,E) and every edge e has
a non-negative weight w(e). The objective is to find a subset S ⊆ V such that w(∂S) =

∑
e∈∂S w(e)

is maximized. The SDP relaxation for the maximum cut problem is the following.

opt ≤ sdp := max
1

2
·
∑

(u,v)∈E

w(u, v) · (1−Xuv) (Max Cut SDP)

Xvv = 1, ∀v ∈ V (1)

X < 0, (2)

Next, we decompose the SDP solution X to obtain n vectors v1, . . . ,vn which live in Rd such that
Xij = v>i vj ; here d is the rank of X and is at most n. In particular, ‖vi‖ = Xii = 1, that is, the
vectors are unit vectors (in `2-norm). The SDP can therefore be recast as

opt ≤ sdp =
1

2

∑
(i,j)∈E

w(i, j) ·
(
1− v>i vj

)
: ‖vi‖2 = 1,∀i, vi ∈ Rd (3)

The objective is to take these n high-dimensional vectors, one corresponding to each vertex i ∈ V ,
and then somehow obtain a cut S ⊆ V whose value can be compared with sdp. This procedure is
often called SDP “rounding”, although rounding is not quite what is occurring here.

• SDP “Integrality” Gap. Let us discuss the notion of “integrality gap” of the SDP relaxation. This is
akin to the notion of integrality gap for LPs, and is defined as

α(Max Cut SDP) := min
I : Max Cut Instance

opt(I)
sdp(I)

The best approximation one can hope to prove using an SDP relaxation is this quantity and we would
like to prove this as large as possible. However, any example would provide an upper bound on this.
Before we describe the algorithm, let us give a simple example giving an upper bound α(Max Cut SDP);
this perhaps helps in getting a feel of the algorithm.

• A Simple Integrality Gap Example. The example is just the 5-cycle C5. The maximum cut value is 4
obtained by taking any two non-consecutive vertices on one side. We now describe a SDP solution to
(3) which has a higher value than 4. We need to show 5 unit vectors corresponding to the 5 vertices
such that for neighboring vectors, v and v′ say, the dot-product v>v′ is as small as possible. Or
geometrically, they should be making as obtuse an angle with each other. Can you see how to do this?
See Figure 1.

Note that the vectors in the example above lay in 2-dimension. One may think that perhaps the sdp
value for this example can be increased by considering vectors in higher dimensions. But turns out

1Lecture notes by Deeparnab Chakrabarty. Last modified : 16th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



1

2

4

5

1

23

3 4

5

4

Figure 1: The C5 embedded onto the boundary of a unit circle. The angle between two neighboring vectors
is 4π/5 = 144◦ and thus each edge contributes 1 − cos(4π/5) ≈ 1.809, and the sdp solution is ≈ 4.5225
implying α(Max Cut SDP) ≤ 0.8845.

that this is the optimal SDP solution (one can check this by plugging into an SDP solver). One may
also imagine that there may be much more complicated examples proving much better upper bounds
on α(Max Cut SDP), and perhaps this value could be closer to 0.5, which is the integrality gap of the
“natural LP relaxation” for the max-cut problem. It was indeed a surprise that the true integrality gap
is quite close to 0.88. And the algorithm is extremely simple and is one of the most famous algorithms
in approximation algorithms.

• The Goemans-Williamson Algorithm. Let’s recall again what we have : we have n vectors embedded
on the boundary of a high-dimensional sphere. The embedding is such that vectors corresponding to
end points of an edge have a “repulsive force” and are trying to be on antipodal points of the sphere.
Our goal is to find a partition of these vertices into two parts. The Goemans-Williamson algorithm, in
this author’s imagination, is as follows. This high-dimensional sphere is an orange, which we give a
“random spin” and slice it through the center with a high-dimensional samurai sword. For any pair of
neighboring vertices, if they are “far away” on the orange, then it’s “more likely” they will be sundered
by the slice. More precisely, we choose a random unit vector r ∈ Rd and cut the high-dimensional
ball using the hyperplane for which this r is the normal. The partition S ⊆ V is formed by picking
the vectors which fall in one side of this hyperplane. Formally,

1: procedure GOEMANS-WILLIAMSON(v1, . . . ,vn ∈ Rd, ‖vi‖2 = 1):
2: Sample r ∈ Rd with ‖r‖2 = 1 uniformly. . How does one do that?
3: S = {i : v>i r ≥ 0}.
4: return (S, V \ S).

Theorem 1. The expected weight of the cut returned by GOEMANS-WILLIAMSON is αGW =
2
π ·minz∈[−1,1]

arccos z
1−z ≈ 0.87856.

Proof. Fix an edge (i, j) ∈ E. We prove that Pr[(i, j) ∈ ∂S] ≥ αGW ·
(
1
2 · (1− v>i vj)

)
; the proof

then follows via linearity of expectation.

2



Now, consider the 2-dimensional circle C on the plane P defined by vi,vj and 0. Consider the
hyperplane H := {x : x>r = 0} and let h := H ∩ P be the line passing through the centre of C.
The first observation is that (i, j) ∈ ∂S if and only if vi and vj lie on opposite sides of the “diameter”
h. The second key observation is that if r is uniformly sampled on the d-dimensional sphere, then
by symmetry on any great circle (whose centre is 0) the projection of r on that plane is uniformly
random on that circle. In other words, h is uniformly distributed among all diameters. See Figure 2
for an illustration.

𝐯𝑖 𝐯𝑗

𝐫

𝐡

Figure 2: The orange restricted to the plane containing vi, vj and the centre. The blue h is the intersection
of the (d− 1) dimensional samurai sword and this plane. Any diameter is equally likely, and the slice split
i and j if and only if it’s in the shaded region. The angle is arccos(v>i vj) and there are 2 of them. This
divided by 2π is the probability i and j are split.

Therefore if we say θ is the angle between vi and vj , and therefore θ = arccos
(
v>i vj

)
, then the

probability i and j are separated is θ
π . In other words,

Pr[(i, j) ∈ ∂S] =
arccos

(
v>i vj

)
π

=

(
2

π
·
arccos

(
v>i vj

)
1− v>i vj

)
︸ ︷︷ ︸

≥ αGW by definition

·
(
1

2
· (1− v>i vj)

)

• The Goemans-Williamson Constant. The function g(z) := 2
π
arccos z
1−z obtains its minimum value at

z ≈ −0.69. This can be seen in Figure 3. That is, when the angle between the endpoints of the edges
is roughly 133.63◦. This minimum value of g(z) is called αGW, the Goemans-Williamson constant.

It is instructive to ask what occurs if the angle between the endpoints of the edges is much larger, and
really close to 180◦, or π-radians. More precisely, if the contribution of the edge (i, j) to the SDP
value ≥ (1− ε), then what’s the probability this edge would be cut by the GOEMANS-WILLIAMSON

algorithm? As can be seen from the plot in Figure 3, as z → cos(π) = −1, the value g(z) → 1 as
well. A non-asymptotic statement is also possible as stated below. In particular, when ε = 0.005, we
get that the probability the edge is cut ≥ 0.9.

3



Figure 3: The left figure shows a plot of g(z) := 2
π ·

arccos z
1−z in z = [−1, 0] marking the minimum point as

a red dot. This plot is a proxy of how the approximation ratio behaves if all the v>i vj’s were z. The right

figure shows the same plot in the range z = [−1,−0.99]. It is overlaid with the plot h(z) = 1− 2
π ·
√

1+z
2

in orange. Note if 1−z
2 = 1− ε, then H(z) is plotting 1− 2

π

√
ε.

Lemma 1. For any edge (i, j) ∈ E, if 1
2 ·
(
1− v>i vj

)
≥ (1−ε), then Pr[(i, j) ∈ ∂S] ≥ 1−

√
2ε.

Proof. First note that the premise of the lemma is equivalent to v>i vj ≤ −1 + 2ε. Now note that we
may assume ε < 1/2, for otherwise the lemma holds vacuously since we would have 1 −

√
2ε ≤ 0.

Therefore, v>i vj < 0, and in particular the angle between them is obtuse. Let’s call the angle between
vi and vj as π− θ (instead of θ); therefore, we get that Pr[(i, j) ∈ ∂S] = 1− θ

π . Note that as ε→ 0,
we also have θ → 0. In particular, since ε < 0.5, we have θ < π

2 < 2. Now, using the Taylor
expansion of cos(x) around π, we get

v>i vj = cos(π − θ) = cos(π)− cos(π)θ2

2!
+

cos(π)θ4

4!
· · ·

= − 1 +
θ2

2!
− θ4

4!
+
θ6

6!
− θ8

8!
· · · > −1 + θ2

3
(4)

where the last inequality follows from θ < 2. To be clear, this is because for such small θ, θ
2

6 > θ4

24 ,
and θ2k

(2k)! >
θ2k+2

(2k+2)! for k ≥ 3.

Since v>i vj ≤ −1 + 2ε, we get that θ <
√
6ε, implying Pr[(i, j) ∈ ∂S] = 1− θ

π ≥ 1−
√
2ε.

The above lemma has a corollary that if the sdp value is at least (1 − ε) times the total weight of
the edges (which is the value of the best possible cut), then the Goemans-Williamson algorithm also
obtains a large fraction of this weight. In particular, if there exists a cut separating 99.5% of the edges,
then Goemans-Williamson finds a cut separating 90% of the edges.

Corollary 1. Let W :=
∑

e∈E we. If sdp ≥ (1− ε)W , then Exp[algGW] ≥W (1−
√
2ε).

4

https://en.wikipedia.org/wiki/Taylor_series


Proof. This basically follows from the previous lemma and the concavity of the square root function.
More precisely, let us define two random variables as follows: sample an edge (i, j) with probability
w(i,j)
W and define X := 1

2(1 − v>i vj) and Y :=
arccos(v>

i vj)
π . Note that, by design, Exp[X] = sdp

W

and Exp[Y ] = Exp[algGW]
W .

Now, the proof of Lemma 1 implies that Y ≥ 1−
√
2(1−X) with probability 1; if (i, j) is sampled

then Y is precisely the probability (in the Goemans-Williamson algorithm) that (i, j) is cut. In par-
ticular, this implies that Exp[Y ] ≥ 1 − Exp[

√
2(1−X)]. Since f(x) =

√
2(1− x) is a concave

function, Jensen’s inequality implies Exp[
√

2(1−X)] ≤
√
Exp[2(1−X)]. Since Exp[X] = sdp

W ,
and by the premise of the lemma this is ≥ 1 − ε, we get that Exp[2(1 − X)] ≤ 2ε. And there-
fore, Exp[Y ] ≥ 1 −

√
2ε. Recalling that Exp[algGW] = W · Exp[Y ] completes the proof of the

corollary.

Exercise: KK

Recall the MAX2SAT problem: we are given a SAT formula φ on n variables and m clauses,
and each clause has precisely two literals. Write an SDP relaxation for the MAX2SAT problem
similar to the Max-Cut problem. And then obtain a αGW-approximation for the same.

• A Different Interpretation. Here is a different interpretation of the SDP relaxation for the maximum
cut. Imagine, a prover asserts that the optimum maxcut on a particular instance I is some number sdp.
In fact, the prover asserts that not only is there a cut of this value, but rather there exists a whole distri-
bution D over such cuts. More precisely, considering cuts as Boolean vectors Z ∈ {−1,+1}n where
the +1’s form one side of the cut, the prover asserts that there is a distributionD over {−1,+1}n such
that for any Z ∼ D, the value of this cut is sdp. Of course, the prover is trying to cheat us; there may
not be any such distribution, and our job is to get a “good” cut even if this prover is lying, or catch the
prover’s deception.

If we, the verifiers, had full access to this purported distribution D, then there’s nothing to do: we
could sample from D and we also would obtain cuts of value equalling sdp. Unfortunately, this
prover isn’t providing this distribution. Instead, they are willing to provide us with moments of this
distribution. Recall, the first moment of a random variable X is its expectation. Being a bit more
precise, for any i ∈ V , the prover is willing to provide us xi = ExpZ∼D[Zi]. Note that the prover
could be lying about this as well, and we would like to put some “necessary conditions” on these
first moments. One such constraint is that −1 ≤ xi ≤ 1 since that is the range of Zi’s. And if one
thinks about it for a bit, that is all the constraints we can put on the first moments for the maximum
cut problem. By the way, this is the interpretation that suffices for any linear programming relaxation
for any of the problems we have seen in this course. All we get are “fractional” variables which can
be interpreted as the first moments of individual variables. And then the linear constraints can be
interpreted as expectations of linear constraints that the means of Zi’s must satisfy.

Now suppose, that the prover is also willing us to provide second moments as well. That is, for any
i ∈ V, j ∈ V , the prover is also willing to give us xij = ExpZ∼D[ZiZj ]. Once again, how would
we be convinced that these xij’s are indeed second moments? Is there a necessary condition on these
xij’s? One trivial check is that xii better be 1 for all i ∈ V since Z2

i is supposed to be 1. What
else? If you remember the examples of PSD matrices we saw last time, one necessary condition on
the n × n matrix X where Xij = xij , the purported second moments, is that X needs to be positive

5



semidefinite. And if we club these two necessary conditions together, and note that the expected value
of the cut Z drawn from D is precisely

∑
(u,v)∈E w(u, v) ·

1−Exp[ZiZj ]
2 , we get the SDP relaxation

(Max Cut SDP).

• Gaussian Rounding. Does the interpretation above give any insight about rounding? Well, it really
boils down to asking oneself: given access to the second moment matrix X from a purported distribu-
tionD over {−1,+1}n, can we “learn”D itself? More precisely, can we sample fromD? If we could
do so, then we would be solving our maxcut instances optimally. And so this task is also NP-hard.
However, one can sample from a different true distributionD′ with the same moment matrix X except
that the support ofD’ is not {−1,+1}n but rather Rn. This is the Gaussian Distribution with moment
matrix X. We now describe this and how it really is just a reinterpretation of the Goemans-Williamson
algorithm.

First, recall that the one dimensional Gaussian, simply called a standard gaussian, g ∼ N (0, 1)
with mean 0 and standard deviation 1 is distributed over R with probability distribution function
f(x) = e−x

2/2. Here is the reinterpreted Goemans-Williamson algorithm.

1: procedure GOEMANS-WILLIAMSON REINTERPRETED(X < 0):
2: Obtain vectors vi ∈ Rd such that Xij = v>i vj .
3: Let V ∈ Rd×n be the matrix whose columns are vi’s.
4: Sample independently ri ∼ N (0, 1) for 1 ≤ i ≤ d, and let r = (r1, . . . , rd) ∈ Rd.
5: Let g := V >r.
6: S = {i : gi ≥ 0}.
7: return (S, V \ S).

Note that the r above is, after scaling by its length, precisely a point drawn uniformly at random
from the unit sphere in d-dimensions. Also note that gi = v>i r, and so the set S is precisely the one
returned by the Goemans-Williamson algorithm. The analysis is also exactly the same, and such a
calculation was done a century ago in a different context.

To see this, first note that each gi itself is a standard Gaussian N (0, 1). To see this, note that gi is a
linear combination of the ri’s, and a linear combination of standard gaussians is a standard gaussian
with standard deviation equal to the

√
‖vi‖2. And since Xii = 1, we get ‖vi‖2 = 1. Secondly, note

that these gi’s are not independent, but rather

Exp[gigj ] = Exp[(v>i r)(v
>
j r)] = v>i vj = Xij

The second inequality simply follows from the fact that ri’s are independent standard gaussians.
Therefore, the distribution g = (g1, . . . , gn) vector is precisely the (true) distribution D′ whose mo-
ment matrix is X. The only catch is that the support of D′ is in Rn and not in {−1,+1}n. The
“rounding” algorithm is probably the first thing that comes to mind: use the “sign” of the gi’s to figure
out which side the i’s should fall. And this is precisely done above. Finally, the analysis of this al-
gorithm depends on understanding how the signs of correlated random gaussians are distributed. And
this was understood a long time back.

6



Lemma 2 (Sheppard’s Formula, [7]). Let G and H be two standard Gaussians which are ρ-
correlated, that is, Exp[GH] = ρ for some ρ ∈ [−1,+1]. Then, Pr[sgn(G) 6= sgn(H)] =
arccos(ρ)

π .

The proof of the above lemma is precisely the proof we sketched in the GW-analysis. One first writes
(G,H) as a product of two independent standard gaussians (R1, R2) multiplied by a 2×2 correlation
matrix. And then one notes that (R1, R2) is uniformly distributed over the circle (after scaling), and
the probability that G and H are different signs is simply the probability that the random point on the
circle splits the two points indicated by the rows of the correlation matrix. We leave these details out.
It can also be done using calculus, but that is not the nicest way to do it.

Notes

The algorithm described here is from the seminal paper [3] by Goemans and Williamson, and the example
of the 5-cycle can also be found in the paper. Soon after, this paper [2] by Feige and Schechtman gave an
example which proved that α(Max Cut SDP) = αGW. Remarkably, a few years later, this paper [5] by Khot,
Kindler, Mossel, and O’Donnell proved that under a certain yet unproven conjecture called the Unique
Games Conjecture, it is NP-hard to obtain any approximation factor better than αGW. This paper, and a
follow-up paper [6] by Raghavendra opened up connections between SDPs and approximability. Without
assuming UGC, it is known that Max Cut is NP-hard to approximate better than 16

17 = 0.94. This latter result
is from another seminal paper [4] by Håstad.

The different interpretation is in fact a special case of a powerful way of looking at SDP relaxations.
Indeed, by asking for higher moments from the prover, one can obtain stronger and stronger SDP relaxations.
This way of looking at things is often called the “sum-of-squares” methodology, and is an active area of
research obtaining exciting results. We point to the interested reader to this nice survey [1] by Barak and
Steurer, and also to these lecture notes by Boaz Barak for a much deeper foray.

7

https://www.boazbarak.org/sos/prev/


References

[1] B. Barak and D. Steurer. Sum-of-squares proofs and the quest toward optimal algorithms. In Proceed-
ings of International Congress of Mathematicians (ICM), 2014.

[2] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding technique for max
cut. Random Structures Algorithms, 20(3):403–440, 2002.

[3] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum Cut and
Satisfiability Problems Using Semidefinite Programming. Journal of the ACM, pages 1115–1145, 1995.

[4] J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001.

[5] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for max-cut and
other 2-variable csps? SIAM Journal on Computing (SICOMP), 37(1):319–357, 2007.

[6] P. Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proc., ACM
Symposium on Theory of Computing (STOC), pages 245–254, 2008.

[7] W. F. Sheppard. III. On the application of the theory of error to cases of normal distribution and normal
correlation. Philosophical Transactions of the Royal Society of London. Series A, (192):101–167, 1899.

8


